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Abstract On small-meso scale, the sea ice dynamic characteristics are quite differ-
ent from that on large scale. To model the sea ice dynamics on small-meso scale, a
new elastic-viscous-plastic ( EVP) constitutive model and a hybrid Lagrangian- Eule-
rian ( HLE) numerical method are developed based on continuum theory. While a
modified discrete element model ( DEM) is introduced to model the ice cover at dis-
crete state. With the EVP constitutive model, the numerical simulation for ice ridging
in an idealized rectangular basin is carried out and the results are comparable with the
analytical solution of jam theory. Adopting the HLE numerical model, the sea ice dy-
namic process is simulated in a vortex wind field. The furthering application of DEM
1s discussed in details for modeling the discrete distribution of sea ice. With this stud-
y, the mechanical and numerical models for sea ice dynamics can be improved with
high precision and computational efficiency.

Key words sea ice dynamics, constitutive model, numerical method , discrete ele-
ment model, small-meso scale.

1 Introduction

The ice cover plays an important role for global climate in the polar region, and also
brings a series of engineering problems in the sub-polar. To solve the sea ice problems on
various scales, the numerical simulations of sea ice dynamics have been investigated for
more than several decades. To improve the computational precision and efficiency, some ef-
forts have been carried out from two aspects, i. e. developing reasonable constitutive models
and effective numerical methods.

The existing constitutive models for sea ice dynamics mainly includes viscous plastic
(VP) model !l elastic plastic ( EP) model[2] | elastic-viscous -plastic model coupled

(3.4]

with granular flow dynamics , and anisotropic models'37]. The VP model has been ap-

plied most widely in the polar areas on large temporal-spatial scale, and in the Baltic Sea

8-10]

and Bohai Sea on meso-scale! . Various modifications on VP model have been attemp-

ted either for computational efficiency or for physical process [''"'3]. However, the VP
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model can not model the elastic deformation of sea ice on meso-small scale, even it works
well in polar regions on large scale.

In the present study, an elastic-viscous-plastic ( EVP) model for sea ice dynamics is
developed. In this model, the elastic-viscous behavior under small strain and strain rate,
the plastic rehology under large strain, the Mohr-Coulomb yielding criterion, and the hydro-
static pressure are considered. Similar to the VP and EP models, the EVP model also as-
sumes the ice as a two-dimensional isotropic continuum. To check the validity of EVP mod-
el, the ice ridging process in a rectangular basin is simulated.

In the numerical simulations of sea ice dynamics, & series of numerical models have
been developed in Eulerian, Lagrangian Coordinates or their corbinations since 1970s. The
Eulerian Finite Differeace Method ( FDM) is the mos: widely applied numerical approach in

19.10,16) - Meanwhile, some Lagrangian methods, such as Smoothed

the sea ice dyramics
Particle Hydrodynamics (SPH) , were developed to overcome the numerical diffusion in ad-
vection term of FDM[!720]

particle searching costs a huge computing time, which limits its applications in the long

But in the applications of Lagrangian method, the neighbor

term sea ice simulation. Recently, some coupled Lagrangian-Fulerian methods, such as
Particle-in-cell ( PIC ) approach, were developed and applied in various cold re-
gions!13:21:22]
To improve the precision and computational efficiency of coupled Lagrangian-Eulerian
method, a hybrid-Lagrangian-Eulerian ( HLE) model is developed with adopting the SPH
concept. In this HLE model, the ice motion, thickness and concentration are calculated
with Lagrangian ice particles, and the ice velocity is simulated in Eulerian grids. Between
the Lagrangisn particles and Eulearian grids, the Gaussian integral function is adopted to
transfer the ice variables. With this HLE model, the ice drifting process in a vortex wind
field is modeled.

In the field observations and satellite images, it is shown that the sea ice performs as

(193] The ice floes have a large size range, which can be more than

[5,19,24]

granular materials
100 km on large scale, or less than 1 m on small scale . To model the dynamic char-
acteristics of sea ice cover in discrete state, the discrete element model ( DEM) has been

18.25.26.27]  In conventional DEM, the ice cover is described as rigid blocks

developed!
with constant size and thickness, but the parameters of ice blocks can not be determined ex-
actly. Moreover, the huge computational cost of DEM is the key limitation. Therefore, a
modified DEM is introduced for sea ice dynamics in the present study. In this modified
DEM, the most novel portion is the particle plastic deformation, which can model the ice
rafting and ridging, and affect the thickness of ice particles.

This paper is organized as follows. Firstly, the EVP constitutive law is established for
sea ice dynamics, and is validated with the ice riding in a rectangular basin. Then, the
HEL numerical method is introduced and applied to model the ice dynamic process in a vor-
tex wind field. Finally, the modified DEM is discussed in details to simulate the sea ice dy-

namics under various ice conditions.
2 Elastic-Viscous-Plastic (EVP) Constitutive Model for Sea Ice Dynamics

On meso-small scale, the ice cover appears rafting, ridging and breaking up random-
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ly. Considering the sea ice dynamics characteristics described above, an EVP model is es-
tablished. With this EVP model, the ice ridging process in an idealized rectangular basin is
simulated.

2.1 EVP constitutive model for sea ice dynamics

Similar to many constitutive models of sea ice dynamics, the present model includes an
elastic- viscous equation, a Mohr-Coulomb yield criterion and an associatzd vormality plas-
tic flow rule. In addition, the hydrostatic pressure depending on the ice thickness and con-
centration is also considered. The Elzstic viscous-plastic model is depicied in Fig. 1. In
this figure . ¢ is tre normal stress, &, and g, are the eiastic and plastic strain, respective-
ly. The spring, dashpot, and sliding blocks represent the elastic, viscous and plastic prop-
erties o! sez ice, respectively.

Fig.1 Elastic-viscous-plastic model for sea ice dynamics. Here, o is the normal stress, £, and g, are the elas-
tic and plastic strain, respectively. This figure mainly includes three portions, i. e. , the elastic spring,
the viscous dashpot and the plastic sliding block.

Considering the hydrostatic pressure, the stress-strain ( strain rate) relationship of e-
lastic-viscous equation is given as
oy = 2nvey + (Ly —nv) ewdy +26e; + (K - G)eydy; - P.§; (1)
where o;; and &;; are the stress and strain tensors; él-j is the strain rate; {, and 7, are the
bulk and shear viscosities; §;; is the Kronecker delta symbol, and §; =1 (i=j) or 0 (i
7). P_is the hydrostatic pressure. K and G are the bulk and shear elastic modulus with K =
E/[2(1-v)] and G=E/[2(1 +v)]. Here E is the Young’ s modulus, and v is the
Poisson’ s ratio. The elastic modulus of ice cover is affected by ice concentration with E =
Eo(N/N,o )™, here Ej is the Youns’ s modulus of sea ice at maximum concentration; In
this study, we set Eg =1.0 x 10> Pa; m is the empirical constants, normally m =15; N is

11][28]

the ice concentration, and N___is its maximum value! .

max

For the plastic yielding criteria of sea ice, the Mohr-Coulomb friction law has been in-
troduced into ice dynamics'®!. Generally, the Mohr-Coulomb yield surface is a hexagonal
cone in 3-D principle stress space. For the sea ice dynamics, the principle stress in the z
direction is its mean stress, which is set as g3 = — P5. Thus, a hexagonal curve can be
truncated from the hexagonal cone. The yielding function is determined by the three param-
eters, namely frictional angle, cohesion and hydrostatic pressure. The Mohr-Coulomb yield
curve is constructed with the three lines, i. e. shear, compressive and tensile surfaces ( as

shown in Fig. 2), and can be written as

g = KDO'2 +2CA/KD (2)
gc =_ch0 —2CA/KC (3)

_KDPO +2CA/KD (4)

gT
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where | and ¢, are the principle stresses; o¢ and g1 are the compression and tension
strengths ; P is the mean pressure in the vertical direction of ice cover; c is the cohesion of

sea ice; The parameters Kpy and K¢ can be determined with K, = tan® (/4 - ¢/2) and K.

=tan’ (/4 +¢/2). Here ¢ is the internal friction angle of sea ice, and is shown in Fig.
2.

ol
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Fig.2 Mohr-Coulomb yielding criterion of EVP model. Here o, and ¢, are the principle stresses; o and o
are the compression and tension strength; P, is the mean pressure in the vertical direction of ice cover;

c is the cohesion of sea ice.

Considering the influence of ice concentration, the mean vertical hydrostatic pressure
can be expressed as(!!]
P (-2 ) s
pu! 2 N
where p; and p,, are the densities of ice and water; g is the gravity; ¢; is the ice thickness;
The horizontal hydrostatic pressure can be calculated as P, = KoPy. Where P, is the hori-
zontal hydrostatic pressure; K; is the transfer coefficient. In broken ice field without cohe-

max

sion, there is the expression Ky =1 - sing.

When the ice stress steps into the plastic state under large deformation, the principle
stress will be on the yield curve. The total deformation includes two portions: elastic strain
and plastic strain. When the stress is in the elastic state, the plastic strain is zero. While
in the plastic state, the plastic strain can be determined with Drucker’ s Postulate. Here,
the associated normal flow rule is adopted. In this way, the Mohr-Coulomb yielding function
is used as the plastic potential function, and the direction of plastic strain rate is normal to
the yielding curve.

2.2 Numerical simulation of ice ridging with EVP model

A rectangular basin with length L and width B is covered by uniform layer of ice with
thickness t;, and concentration Ny. Under constant wind and current drags, the sea ice
piles up at downstream. The internal ice resistance increases with the ice thickness to bal-
ance the wind and current drag forces. Considering the bank friction, the steady ice ridge
thickness profile can be obtained from the classical static ice jam theory (28] The stress in

x direction is calculated with the plastic limit analytical theory. In this ice ridging case, the
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ice volume remains constant, and the ridging length can be determined according to the
thickness profile function.

The ice ridging process in a rectangular basin is simulated with EVP model. The model
parameters in the simulation are listed in Table 1. Considering bank friction, the mean
thickness and its contour are plotted in Fig. 3 and Fig. 4. Under the given wind and cur-
rent condition, the thickness profile approaches steady state after 4 hours. The ice thickness
near the bank is thinner than that along the center line of the channel. The width-averaged
ice thickness is consistent with the analytical solution. The shear and normal siresses in x
direction are presented in Fig. 5. It can be seen the shear stress 1s higher ai bark bounda-
ry, and approaches zero at the middle basin, ead is svcametric with the centerline. The nor-
mal stress in x directica is proportion to the ice thickness.

Table i. FPar:meters_used in the ice ridging simulation

Parameter Definition Value  Parameter Definition Value
B Width of ice field (m) 500 L Initial ice length (m) 4500
Lo Initial ice thickness (m) 0.2 No Initial ice concentration (% ) 100
V, Wind speed (m/s) 8.0 V, Current speed (m/s) 0.1
C, Wind drag coefficient 0.015 C, Current drag coefficient 0.02

0.8
e Bl Simulated results 3.0-4.0
; ---- Analytical solution B
0.6 -
_0.5F
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Fig.3 Width-averaged ice thickness simulated and analytical solution considering bank friction.
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Fig.4 lce thickness contour simulated with EVP model.

Therefore, the ice ridging process in rectangle basin can be simulated validly with this
EVP constitutive model. The simulated ice thickness profile at steady state is agreeable with
the analytical solutions of classical ice jam theory.
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Fig.5 Distnbution of shear stress ond normal stress in x direciion.

3 Hybrid Lagrangian-Eulerian ( HLE) Numerical Model for Sea Ice Dynamics

In this HLE numerical model, the sea ice velocity is simulated in Eulerian coordi-
nates, and the ice thickness and concentration are determined in Lagrangian Coordinates.
The Gaussian interpolating function links the sea ice variables between Eulerian and La-
grangian Coordinates. To examine the reliability of this HLE model, the sea ice dynamical
drifting in a vortex wind filed is simulated.

3.1 HLE numerical model for sea ice dynamics

The ice parameters of Eulerian grids note, such as thickness, concentration, can be
determined by its neighbor ice particles at Lagrangian locations. Based on the SPH con-
cept, the sea ice thickness and concentration on grid node X;; can be interpolated from its
neighbor particles with

ﬁl(le) = ’;[]"‘;L_I;W(Xu—rk,ho)hl(rk)] (6)

N(XU) = 2[%W(Xq—rk,ho)]v(rk)] (7)

k=1

where X, is the position vector of gird node (i,j) ; h;(r;) and N(r;) are the thickness and

concentration of sea ice particle k; INLi (X;;) and ./V( X;;) are the estimations of ice thickness
and concentration on grid node (i,j).

When the ice thickness and concentration at grid nodes are determined, their velocities
can be solved with the momentum equation using finite differential method ( FDM) at Eu-
learian grids. With the ice velocity at grid nodes, the velocity of each particle can be esti-
mated with Gaussian function. If the position of ice particle k is r;, the velocity of this par-
ticle can be interpolated from its grid neighbors with

V) = X X [SMw(x, - rpho) Vi) ®)
t J I:]'

M

where f/(rk) is the evolution of velocity vector of ice particle k; V;; is the velocity vector of
grid (i,/); m; and M;; are the mass and mass density of grid (i,j) , respectively.

1994-2009 China A Jo c lis h . http://www i.net
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When the velocity of particle k at time step ¢" is determined with Eq. (8) , its position

n+1 can be calculated with

r (Y = () + AV (R (1)) (9)

vector at time step ¢

where At is the time step.

In this HEL model, the mass density of each ice particle is used to determine the
thickness and concentration of ice particles. Thus, the numerical diffusion in solving conti-
nuity equation in Eulerian Coordinates is avoided.

Considering the ice particle & at position r;, its mass density can be estimated with its

neighbor particles by[25] [18]

rA) zm W(r, - r,hy) (10)
The siooth length of ice particies ho can be adjusted with its current mass density.

Considering the density mass of ice particle k with M(r,) =p;N(r,)h;(r,), the concen-
tration of this particle is given by

M(r,
(ry) (11)

|hi(rk)

If N(r,) >1.0, the ice ridging occurs, and N(r,) =N, ,, =1.0 is tenable. The

N(r,) =

thickness of ice particle £ can be calculated with h;(r,) = M(rk)/(piNmax ).

Based on the description above, the ice velocity, concentration and thickness are all
determined in Lagrangian and Eulerian Coordinates, and the numerical simulation of sea ice
dynamics can be performed with the computational loops above.

3.2 Numerical simulation of ice drifting in a vortex wind field

The numerical test of sea ice drifting in a vortex wind field was constructed by Fla-
tol 1) 10 estimate the PIC approach for sea ice dynamics. Here, this vortex wind field is al-
so adopted to verify the HLE model. In this vortex wind field test, the upper half of 500 km
x 500 km rectangular domain is covered by uniform ice cover with thickness of 1.0m and

concentration of 1. 0. The lower half is open water. The vortex wind field is defined
with! 13

W(r) = mln{wr }k x L (12)

r

where W is the wind vector, r is the distance to the vortex center, r is the position vector to
the vortex center, and the vortex center position is (250 km, 200 km). Here w =0.5 x
1073 s " and A =8 x 10> m%/s. The sea ice dynamical porcess in this vortex wind field is
simulated in 10 days with HLE model. In this simulation, the time step is 180 s, grid size
is 10 km x 10 km, and the initial ice particle size is 5 km x5 km. The simulated ice parti-
cles distribution and the mean ice thickness on Sth and 10th day are plotied in Fig. 6. It
can be found that the ice dynamcis can be well simulated with this HLE model. Especailly,
the ice edge has a sharp shape, which shows the high precision of this model.
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Fig. 6 Velocity vector and mean ice thickness simulated with HLE method.
4 Modified Discrete Element Model (DEM) for Sea Ice Dynamics

In natural conditions, the sea ice appears as granular materials on meso-small scale,
which is quite different from that on large scale. As shown in Fig. 7, either the sea ice sat-
ellite image on meso scale or the sea ice picture taken on small scale in the Liaodong Bay,

the sea ice performs as discrete media. The similar observations are also described in other

(1970231 To model the dynamic characteristics of sea ice in discrete state, the dis-

crete element model (DEM) has been developed on various scales!?1[2911411271130]

studies

Even for the continuum theory of sea ice dynamics, some constitutive models were also
developed based on the granular flow dynamics'3![12?J[31] " But most researchers would like
simulate the sea ice dynamics with DEM directly. Lepparanta et al. (1990) [32) and Shen et
al. (2004) (28] established the DEM to consider the sea ice dynamics at broken-up ice field
on small scale. Hopkins (1996, 1999)[41130) simulated the ice ridging/rafting on me-
soscale. For the case of large scale, the DEM was also applied in the polar region re-
cently[zﬂ. With the previous studies above, it can be found that the sea ice dynamics can

be simulated with DEM on various scales.
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Fig. 7 Satellite image of sea ice cni neso scale ! left) ard the sea ice picture ca small scale (right) in the Lia-
odong Bay. The satellite image was obtained with MOD1S remote data on January 15, 2001. The sea ice
picture was takan va January 10, 2000 in the JZ20-2 oil field of the Liaodong Bay.

In the conventional DEM for sea ice dynamics, the ice cover is described as rigid
blocks with constant size and thickness. In the case of meso-large scales, the parameters of
ice blocks (i.g. ice thickness, position, velocity, size and shape, etc. ) can not be deter-
mined exactly. Moreover, the huge computational cost of DEM is the key limitation. It is
impossible to describe all of the ice blocks and their broken, rafting or ridging processes.
Therefore, a modified DEM is considered for sea ice dynamics in the present study. This
modified DEM adopt the concept of SPH approach, and one ice particle is an assembly of
small ice blocks. Therefore, the ice particle is not a real ice block, and has its statistical
information depending on its ice floes inside.

The interaction among ice particles is determined with the elastic-viscous-plastic con-
tact model. The contact force model mainly consists of four portions; damping force propor-
tional to velocity, elastic force based on stiffness and overlap distance, Mohr-Coulomb fric-
tion force and the plastic force based on the soil mechanics. The inter-particle contact force
model can be linear or nonlinear. In this modified DEM, the most novel portion is the plas-
tic deformation, which can consider the ice rafting and ridging. Since one particle in the
DEM is constructed as an assembly of ice floes, the particle size can be adjusted based on
the interactions with its neighbors, while its concentration and mean thickness can also be
changeable accordingly ( as shown in Fig. 8). The sea ice floes have an initial dense pack-
ing in a sea ice package with high concentration ( as shown in Fig. 8(a) ). Under the wind
and current actions, the ice cover can be packed in loose or dense conditions ( as shown in
Fig. 8(b)-(c) ). In the dynamic process of ice particle size, the total mass of the ice par-
ticle is constant. When the concentration approaches its maximum value 1.0, the mean
thickness will increase with the decreasing of particle size (as shown in Fig. 8(d)).

ic I se.
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A Mohr-Coulomb yielding limit is imposed on the particles to represent ice ridging.
Any stress on the particle, exceeding the yielding criterion, results in particle deformation.
The yielding criterion in the model is only dependent on the compressive stress and can be
determined with Eq. (3). The yielding stress ¢ is also given in Fig. 2 above. In this
modified DEM, cohesion forces can be neglected by setting ¢ =0. Since tensile stress only
occurs when ice particles cohere together, tensile stress is also ignored normally. If consid-
ering the thermodynamics and adhesion among ice particles, the refreezing and broken-up of
ice cover can be described exactly.

5 Conclusions

In the numnericai simulation of sea ice dynamics on meso-small scale, it is a key prob-
lem to establish mechanical and numerical models with high precision and computational ef-
ficiency. In this study, an EVP constitutive model and a HLE numerical method are pres-
ented to model the sea ice dynamics on meso-small scales. Meanwhile, a modified DEM is
also introduced to model the discontinuous state of ice cover. The EVP constitutive model
and the HLE numerical method are validated with the ice riding in a uniform wind field and
with ice dynamic process in a vortex wind field. Different from the continuum concept, the
modified DEM is based on the discrete media mechanics, and can be applied well in the
numerical simulation of sea ice dynamics on meso-small scale.

Based on the studies here, the several works will be considered further. The one is to
combine the EVP constitutive model and the HLE numerical method for sea ice dynamics to
improve the simulation precision and computational cost simultaneously. The other one is to
optimize the numerical algorithm of the modified DEM of sea ice dynamics under various ice
conditions. Finally, the thermodynamics should be considered to coupling with sea ice dy-
namics in both of continuum model and discrete method.
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